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Abstract. The power and elegance of coordinate-free analysis is demonstrated by establishing 
the minimax and maxmini theorems for eigenvalues of self-adjoint operators on a Hilbert 
space as trivial corollaries of a series of lemmas of astounding simplicity. Furthermore the 
analysis brings out the essential identity of the two results in contradistinction to what has 
been generally believed before. A host of other related results are also established and in 
p.articular we have new simplified proofs of the inequalities of Weyl, Poincare and Bateman; 
the latter two of these are better known to physicists as the Hylleraas-Undheim and 
MacDonald theorems and are extensively used in establishing upper bound and convergence 
properties of energy eigenvalues of stationary states of quantum systems. 

1. Introduction 

In a recent publication Stenger (1970) claimed that the minimum-maximum principle 
(Polya 1954) and the maximum-minimum principle (Courant and Hilbert 1953) for 
eigenvalues of self-adjoint operators on a Hilbert space are two fundamentally different 
principles and are not related by a trivial interchange effected by re-ordering of eigen- 
values. Stenger’s assertion is obviously untrue in finite dimension. We now use the 
method of coordinate-free analysis to obtain new and elegant proofs of the two princi- 
ples ; the elegance derives from the extreme simplicity of the proofs. In our work basically 
the same lemma yields both principles thus showing their essential identity. 

The basis of the minimum-maximum principle is the Poincare (1890) inequality and 
this inequality is extensively used in establishing upper bound properties of variational 
estimates of energy eigenvalues of low-lying excited states of stationary quantum systems. 
In fact this inequality was rediscovered for the physicists by Hylleraas and Undheim 
(1930). Bateman (1912) had obtained a more powerful generalization of Poincare’s 
inequality and MacDonald (1933) presented Bateman’s result in a form more easily 
accessible to quantum physicists, and this result is now commonly known as MacDonald’s 
theorem. Bateman’s result itself was in fact a generalization of an old result known 
to several nineteenth century mathematicians (cf MacDonald 1933). The maximum- 
minimum principle is based on Weyl’s (191 1) inequality and though this principle is 
often quoted in physics texts it has so far found little practical application. Most of the 
proofs of these principles and inequalities use both coordinates and determinants and are 
quite clumsy. In Stenger’s (1970) simplified proofs it has been possible to dispense with 
the use of determinants though coordinates are still used and a knowledge of the theory 
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of equations i s  assumed which in this context presumably depends on the theory of 
determinants. 

We now present what seems to us the first coordinate-free proofs of these results. 
Our proofs turn out to be trivial and indeed as knowledge progresses there is so much 
more to learn that trivialization of clumsy proofs of profound results should be of very 
welcome assistance in one's journey to the frontiers of knowledge. This indeed is our 
main achievement in this work. 

The coordinate-free analysis developed here is a continuation of the work of Sharma 
and co-workers (Sharma and Rebelo 1973a, b. 1975, Mare 1975a, b, c). 

2. Formalities 

Let 2 be a Hilbert space over the real or complex field. Let A be a self-adjoint operator 
on .e: i t  is not assumed that A is bounded. We shall denote the domain of A by gA and 
the spectrum of A by SPA. We shall say that the spectrum of A is of type H if SpA is 
bounded below, the lower part of the spectrum is purely discrete, and the first N points 
of the spectrum ordered to form an increasing enumeration have finite multiplicities 
(here N is either a positive integer or the cardinality No of the set of positive integers). 
We shall denote the eigenvalues in this enumeration by /.A and the corresponding multi- 
plicity by m f .  Let E? be the orthogonal projection on the eigenspace 8f belonging to 
the eigenvalue A;. noting that the dimension of 8; is VIP. We denote the orthogonal 
complement of @'= 8: by 8; and the orthogonal projection on 8: by E:. We have 
thus the following decompositions of and the identity operator I on X : 

For 11 6 N we define 
n 

and the image of Ff is a subspace which we denote by .Ft. We denote the dimension of 
Ff by df : clearly 

n 

d i  = nip. 
i =  1 

In our treatment eigenvalues are arranged to form an increasing enumeration and 
each eigenvalue is counted just once. However, people using coordinate-dependent 
treatments find it convenient to use an enumeration in which an eigenvalue E,, of multipli- 
city mi is counted m, times. We shall call this alternative enumeration the primed enumera- 
tion and eigenvalues in this enumeration will carry a prime each. For a givenj E Z+ the 
two enumerations are related by 

where i is the smallest integer for whichj < d , .  For a given i there are mi different values 
of j for which the above relation holds and these values of j are d ,  - + 1, d ,  - + 2,  . . . , 
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d,-  1, d, .  The primed enumeration from the point of view of coordinate-free analysis 
is wasteful and clumsy; nevertheless we use this to establist contact with the classical 
formulation. 

Let P be the orthogonal projection on a subspace 9 of X We denote the orthogonal 
complement of 9 by 9'' and the projection on 9' by P'. Thus 

P' = I - P  

and 

91 = P1(,X), 

A self-adjoint operator A with spectrum of type H if it is unbounded is not defined 
on the whole of ,X but its domain 9, of definition forms a dense manifold in X We 
use the notation I,, to denote the restriction of the identity operator to gA. We shall 
further assume that ,If, < 0 ;  this is not a restriction of any consequence because in the 
general case we can always define an operator A' by 

where i, > Ai. The spectrum of A' is obtained by translating each point in the spectrum 
of A by - A  and the properties we wish to establish in a particular enum'eration are shared 
by both A and A'. 

It is usual to define a partial ordering of symmetric operators on 3' in the following 
way : we define 

A ,  d A ,  

if and only if gA, c QA2 and 

(U, A i u )  6 (U, A l u )  vu E QA,  

where ( . , . ) is the positive definite Hermitian form on 2 
Let 9 be an n-dimensional subspace of 2 and let 9 t gA. Let P be the orthogonal 

projection on 9 P A P  is a well defined self-adjoint operator with domain X : the spectrum 
of P A P  consists of 0, which is an eigenvalue of infinite multiplicity to which all vectors 
in 9' belong, and r eigenvalues 

where the ith eigenvalue has multiplicity mpAp such that 
r 

nipAp = n 
i =  1 

and the direct sum of the eigenspaces belonging to  these eigenvalues is 2 Note that if the 
kernel of P A P  (denoted by Ker P A P )  has a nonzero intersection with 3 then one of the 
orAP is also zero and its multiplicity mp,4p is taken to be the dimension of (Ker P A P )  n .? 
More precisely cyp are the eigenvalues of the restriction of PAP to 9 

3. Somelemmas 

In what follows A is a self-adjoint operator on a Hilbert space over C or R and Sp A is 
of type H. 
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Proof. Both are trivial consequences ofthe spectral theorem. To get the second inequality 
one has merely to  observe that the spectral decomposition of F t A F f  is obtained by 
simply replacing the first i eigenvalues in the spectrum of A by 0 and recalling the assump- 
tion that all such eigenvalues are less than 0. 

Lemma 3.2. Rayleigh-Ritz variation principle (Rayleigh 1945, Ritz 1909) 

if = min (U, A u )  uEQA 
l u l l = 1  

0) 

(ii) if+, = min (U, F ; ~ ~ A F ; ~ ' u )  U E Z A .  
, U !  = 1  

Proof. Trivial consequences of lemma 3.1. 

Lemma 3.3. Let Y be any vector space (finite- or infinite-dimensional) over any field. 
Let 9 be an n-dimensional subspace of V and let YY be a subspace of V of dimension 
greater than n. Let L E  Hom(f V )  be such that L ( V )  = -22. Then there exists a non- 
zero vector u E Ker L n %: 

Proof. Suppose that the lemma is false; then for any collection u i  ( i  = 1,. . . , n+ 1) of 
n + 1 linearly independent vectors in < 

But Lu ,  , . . . , Lu,+ , are n+ 1 vectors in an n-dimensional subspace 42 and cannot be 
linearly independent. The contradiction proves our assertion. 

Lemma 3.4. Let &' be any Hilbert space over any field. Let 9 be an n-dimensional 
subspace of &' and let 3 be a subspace of &' of dimension greater than n. Then there 
exists a nonzero vector U E 3 n 9'. 

Proot Let P be the orthogonal projection on 9? Since Ker P = P (Halmos 1957), in 
view of the preceding lemma there is nothing left to prove. 

Lemma 3.5. Let A be a self-adjoint operator on a Hilbert space &' and let SpA be of type 
H. Let 9 be an n-dimensional subspace of &' such that 9 c 9A. Let r be the smallest 
integer such that n < d,A. Let P be the orthogonal projection on 9 Then the spectrum of 
P'AP' lying below ).e+ is non-empty, purely discrete and consists entirely of a finite 
number of point eigenvalues of finite multiplicities. Furthermore, the dimension of the 
direct sum ofeigenspaces of P A P 1  belonging to eigenvalues in the interval ] - JC, if] is at 
least d /  - n. 

Proof: Let E be the image of the interval ] - m, i(+ ,[ under the spectral measure induced 
by P'AP'. First we prove that E ( 2 )  is finite-dimensional. Suppose that E(&') is 
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infinite-dimensional. Let x E E(&);  then 

( x ,  P'AP'x) = ( x ,  E A E x )  < (x, I<+ l 1 9 A ~ ) .  

Since St+ is finite-dimensional, E(&) n Ft;, has a nonzero vector, say U, but 

(U, A u )  > (U, E-!+ ilgau), 

a contradiction which shows that E(%) is indeed finite-dimensional. Since E(&) is 
finite-dimensional, P A P '  restricted to E ( 2 )  is a self-adjoint operator on a finite- 
dimensional Hilbert space and therefore has a purely point spectrum which consists of a 
finite number of point eigenvalues of finite multiplicities. The spectrum of P'AP' below 
if- , is precisely the spectrum of P'AP' restricted to E(%). We still have to prove that 
the spectrum of P'AP' below it+ is non-empty, ie that E is nonzero. Since n < d;4 from 
lemma 3.4 there is a nonzero vector U E 9' n Ft, for this vector 

(U, P'AP'u) = (U, A u )  < (U, l . f I g A u ) ,  

which is impossible if the spectrum of P'AP' below A!+ is empty. 
Let B be the direct sum defined in the last sentence of the lemma. Suppose that the 

last assertion is false and the dimension of B is less than d,A - n. Then '2 = 9 0 B has 
dimension less than de ; let U be the projection on 22. It follows from lemma 3.4 that there 
exists a nonzero vector U E 4?' n Ft, for this vector 

( U ,  A u )  = ( U ,  U'AU'u) < (u,R~l,,u) 
which is possible only if U'AU' has an eigenvalue less than or equal to if, but since 
U'-(&) is invariant under P I A P I ,  and furthermore since U' < P', every eigenvalue of 
U'-AU' is also an eigenvalue of P'AP'. All eigenspaces of P'AP' which belong to 
eigenvalues less than or equal to A:, however, are subspaces of B and therefore of 42. The 
contradiction proves the final assertion. 

Lemma 3.6. The spectrum of P A P '  of lemma 3.5 is bounded below and the infimum of 
the spectrum is a point eigenvalue which is the minimum value of ((U, A u )  :U E Y1 & 
llull = 1). 

Proof. These are elementary consequences of lemmas 3.2 and 3.5. 

4. The minimum-maximum theory 

All properties in this section concern a self-adjoint operator A on a Hilbert space 2 
over the complex (or real) field with SPA of type H. 

Proposition 4.1. Let 9 be any n-dimensional subspace of & such that 9 c gA and let P 
be the orthogonal projection on 9? Let uPAP ( i  = 1,. . . , r )  be an increasing enumeration 
of the eigenvalues of the restriction of P A P  to 9 For a given j d r, let d j P f l =  X{= mrAP 
and let s be the smallest integer for which 

d;AP d d,l. 

Then if < uyAp. 

Proof. Let FTAP = @{= €pap where &PAP is the eigenspace of the restriction of P A P  to 
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9 belonging to the eigenvalue orAP. Since s is the smallest integer for which d7AP < d$, 
dTAP > df- l .  Therefore (cf lemma 3.4) 9,--jpAp contains at  least one nonzero vector 
14 E F$d1. But for any U E 9;AP 

( U ,  P A P u )  = (U, A M )  < oYAP(u, I sAu)  

and for any U E Ft!l. 
(U, A u )  2 2$(11, z a A u )  

which shows the impossibility of aTAp < it. 

Corollary 4.1.1. PoincarP’s (18YO) inequality. With the primed enumeration of eigen- 
values in proposition 4.1, for j < n 

Proof. By the definition of the primed enumeration E.jA = E.: where i is the smallest 
integer for which j < d: and aipAp = aPAP where s is the smallest integer for which 
j < d%AP. The smallest integer t for which d,PAP < d:’ cannot be less than i, whence 

j,;” = 2: < 1; < g g A P  = aj ’ P A P  . 

In atomic physics this result is known as the Hylleraas-Undheim theorem. 

Corollary 4.1.2. MacDonald’s (1933) theorem. Let 9 c gA be an (n + 1)-dimensional 
subspace of 2 which contains 9 Let Q be the orthogonal projection on 2 Let o;QAQ 
(i = 1,. . . , n + 1) be the primed enumeration of the eigenvalues of QAQ to 2. Then 

a1Q.4Q < a ; P A P  < o;Q*Q < . . , < a y  < aIp;’p. 

Proof. Regarding 2 as the whole Hilbert space and QAQ as A and applying Poincare’s 
inequality, we have 

.;QAQ < 0;‘”‘ ( i  = 1 , .  . . , n), 

Replacing A by - A  and denoting the corresponding eigenvalues by ( -  a);QAQ and 
( - o ) ~ ~ ” ‘  respectively, we have 

( -  a);QAQ = -Cn+ ’QAQ 2 - i ( i  = 1, . . . ,  n + l )  

and 

( - . ) ; P A P  = -a;:<:, ( i =  1, . . . ,  n). 

Using Poincare’s inequality again we get 

-.;$yi = ( -0) ;QAQ < ( - g ) ; P ” P  = -a;,Pyi 

which implies that 

( Q A Q  ( i =  I ,  . . . ,  n)  , P A P  
a n + 1 - i  < o n + 2 - i  

or 

ai’”‘ < giP+:Q ( i  = 1,. . . , n). 

Combining the first and last inequalities we have MacDonald’s theorem, 
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Proposition 4.2. The minimum-maximum theorem. For a given r E Z+ let n be any integer 
in the interval ] d e - ,  , d e ] ,  Let P be the family of n-dimensional subspaces of which 
are also subsets of 9,. Then 

i.; = min max ( ( u , A u ) : u ~ y P J .  
P E P  U = 1  

Proof For a given 2’ E P, max I, = ,  {(U, A u )  :U E 9‘: is, of course, the largest eigenvalue 
oyAp of P A P  restricted to 3 where Pis  the orthogonal projection on 2 Clearly d,PAP = I I  

and the smallest integer i for which dYAP < d;4 is r, whence 

max 
I u / l = l  

((U, All)  :U E 9;. 

Next let 9 be 9:- 0 Y where Y is any ( n  - d:- ,)-dimensional subspace of 6;. Clearly 
9 c QA and is n-dimensional, so that 9 E P. In this case 

( U ,  Ail)  < (U, i . : I g4u )  

so that ;.e B maxl lu  = ((U, A u ) :  U E 9). The combination of the two inequalities 
yields the desired result. 

Corollary 4.2.1. For the primed enumeration of eigenvalues in proposition 4.2 

= min max { ( u , A u ) : u ~ . ? P ) .  
P E P  w = 1  

Proof’. This is an immediate consequence of the preceding proposition and the definition 
of the primed enumeration. (Note that for the purposes of this corollary n is any positi;e 
integer and r of the preceding proposition is defined with the help of n in such a way that 
the given relation between the two is preserved.) 

5. The maximum-minimum theory 

All properties in this section also concern a self-adjoint operator A on a Hilbert space J? 
over the complex (or real) field with SPA of type H. 

Proposition 5.1. Let 9 be an n-dimensional subspace of 2 and a subset of Q.4 and let r 
be the smallest integer for which n < d,A. Then 

min { ( u , A u ) : u ~ @ j  < 
llull = 1 

Proof. An immediate consequence of lemma 3.5. 

Corollary 5.1.1. Weyl’s (1911) inequality. For the primed enumeration of eigenvalues in 
proposition 5.1 

min { ( u , A u ) : u ~ F )  < &t1. 
I U / I  = 1  

Proof. It follows immediately from the preceding proposition and the definition of the 
primed enumeration. 

Proposition 5.2. The maximum-minimum theorem. For a given positive integer r, let n 
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be any integer in the interval [df- 1 ,  d;' - 11. Let P be the family of n-dimensional sub- 
spaces of Jt' which are also subsets of gA. Then 

E,;' = max min {(U,  A u )  : U  E 9'}. 
B € P  /lull = 1  

Proof. Let 9 E P and let P be the orthogonal projection on 9 Since df - n > 1, it 
follows from lemma 3.5 that P'AP' has at least one eigenvalue which is less than or 
equal to Af ; we can, therefore, particularly in view of lemma 3.6, assert that 

min {(U,  A u )  : U  E 9'} < At. 
ll4 = 1 

On the other hand 9; is of dimension greater than n and the dimension of 9;- is 
either less than or equal to n, hence there is an n-dimensional subspace 9 of 9f such 
that 9;- c 9 Clearly 9 E P and for this choice of 8,9' n &/ is non-trivial (cf lemma 
3.4) and for any unit vector in this intersection 

( U ,  A u )  = 1;. 

so that max min i lu l l  = {(U, A u )  : U  E 9', 9;- c % 9 E P} 2 E.:. The two inequalities 
together yield the desired result. 

Corollary 5.2.1. Let P be the family of n-dimensional subspaces of 2 which are also 
subsets of Q A .  Then for the primed enumeration of eigenvalues of A ,  

Proof. See the preceding proposition and the definition of the primed enumeration. 

6. Some other results 

The methods developed above make it easy to find simplified proofs of a variety of 
results on the extrema1 characterization of eigenvalues of self-adjoint operators with 
spectrum of type H. To substantiate our claim we give here proofs of two theorems which 
are interesting. 

Proposition 6.1. The maximum-minimum-maximum theorem. Let A be a self-adjoint 
operator on a Hilbert space A? over the complex (or real) field, SPA being of type H. Let 
I and J respectively be families of i- and j-dimensional subspaces of 2 which are also 
subsets of gA. Let r be the smallest integer such that i + j  Q df. Then 

1; = max min max {(U, A u )  : U E Y } .  
BEJ 9e;, l / u l l = l  

Proof. For a given f E J, let J be the orthogonal projection on $ Lemma 3.5 tells us 
that the direct sum 9 of eigenspaces of J'AJ' belonging to eigenvalues in the interval 
] - oc, 3 . 3  is at least (d, - j > i)-dimensional. Hence it is possible to choose an 9 E I, 
9 c f' such that Vu E 4 (any i-dimensional subspace of 9 will do) (U,  A u )  < , i f l l ~ l 1 ~ ,  
hence 

min max { ( u , A u ) : u ~ 4 }  < 2:. 
/ E l  l l u l l = l  
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On the other hand i f 2  is chosen to be any j-dimensional subspace of 9; and 4 is chosen 
to be any i-dimensional subspace of j1 n Fe, then since 4 0 2 is of dimension greater 
than d/-  9 contains at least one unit vector in the eigenspace 8: and for this choice 
of f 

min max { ( u , A u ) : u ~ 4 }  = 2: 
/ c . F P n j l  ~ ~ u ~ I = l  

I s  I 

so that 

max min max { ( u , A u ) : u ~ Y }  2 2;. 
BEJ $2). I l u / / = l  

The two inequalities give us the required result. 

Corollary 6.1.1. For the primed enumeration of eigenvalues in the preceding proposi- 
tion (Stenger 1968) 

A:",, = max min max { ( u , A u ) : u ~ . ~ ) .  
f s J  l I u ~ l = l  

Proof. See the preceding proposition and the definition of the primed enumeration. 

Proposition 6.2. Let A and B be two self-adjoint operators on a Hilbert space iV over the 
complex (or real) field such that (i) SpA and SpB are both of type H, (ii) gA c QE and 
(iii) (U, B u )  Q (U, A u )  Vu E Q A .  For any given positive integer k, let r and s be the 
smallest integers such that k < df and k 6 d:. Then if 6 i<. 

Proof. Suppose At < A:. Let 27 be the largest eigenvalue of B which is less than or equal 
to if. Such an eigenvalue of B exists because the set of eigenvalues of B less than or equal 
to 1.: is not empty, as can be seen from the following: 

A B  - min { ( u , B u ) : u ~ a ~ j  < min { ( u , A u ) : u ~ g ~ )  = 1.: Q j.: 
- 1 , u , I = 1  l l 4  = 1 

and is bounded above by j.:. Clearly d,B < k 6 df, hence there is a nonzero vector 
U E S y l  n ,F3;4, for this U, 

ivy+ 1 ~ ~ 1 1  2 6 (U, Buj  6 (U, A u )  6 E . f l / ~ l ~ ~ ,  

which is clearly absurd. The contradiction proves our assertion. 

Corollary 6.2. I .  For the primed enumeration of eigenvalues in the preceding proposition 
(Weyl 1950, Kat0 1955, Stenger 1970) 

6 

Proof. See the preceding proposition and the definition of the primed enumeration. 

7. Concluding remarks 

We wish to make a few more points. First? the minimum-maximum theory helps us to 
find upper bounds to energy and other eigenvalues of stationary pure states in quantum 
theory. For any n-dimensional subspace 9 c Q A ,  P A P  is effectively a self-adjoint 
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operator on a finite-dimensional Hilbert space and its n eigenvalues provide upper 
bounds to the first n eigenvalues of A in the primed enumeration. The maximum- 
minimum theory replaces the problem of finding eigenvalues of A by that of P l A P l  
which, like A, is a self-adjoint operator on an infinite-dimensional Hilbert space and so 
for practical purposes is of little use. Second, that most of the results are essentially 
corollaries of lemma 3.3 which is a very powerful yet trivial result. Third, that the main 
use of the maximum-minimum theory is through the insight which it provides with the 
help of lemmas 3.5 and 3.6 into the spectrum of PlAP' .  It could also be useful in the 
study of the Feshbach formalism for decaying states in quantum theory where the under- 
lying Hilbert space is partitioned into orthogonal subspaces 9 and B1 (see, eg, Sharma 
and Bowtell 1973), though the situation in the case of decaying states is substantially 
more complicated because for any sensible choice of B both 9 and B' are infinite- 
dimensional. 
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